Echinodermata – Asteroidea: seastars

UNDERWATER FIELD GUIDE TO ROSS ISLAND & MCMURDO SOUND, ANTARCTICA

Peter Brueggeman

Photographs: Isidro Bosch, Peter Brueggeman, Canadian Museum of Nature (Kathleen Conlan), Paul Cziko, Shawn Harper, Adam G Marsh, Jim Mastro, Bruce A Miller, Rob Robbins, M Dale Stokes, & Norbert Wu

The National Science Foundation's Office of Polar Programs sponsored Norbert Wu on an Artist's and Writer's Grant project, in which Peter Brueggeman participated. One outcome from Wu's endeavor is this Field Guide, which builds upon principal photography by Norbert Wu, with photos from other photographers, who are credited on their photographs and above. This Field Guide is intended to facilitate underwater/topside field identification from visual characters. Organisms were usually identified from photographs with no specimen collection, though there were exceptions. Therefore can be some uncertainty in identifications solely from photographs.

© 1998+: Text © Peter Brueggeman; Photographs © Isidro Bosch, Peter Brueggeman, Canadian Museum of Nature (Kathleen Conlan), Paul Cziko, Shawn Harper, Adam G Marsh, Jim Mastro, Bruce A Miller, Rob Robbins, M Dale Stokes, & Norbert Wu. Photographs may not be used in any form without the express written permission of the photographers. Norbert Wu does not grant permission for uncompensated use of his photos; see www.norbertwu.com
seastar *Acodontaster conspicuus*
page 6

seastar *Acodontaster hodgsoni*
page 11

seastar *Cuenotaster involutus*
page 15

seastar *Diplasterias brucei*
page 18

seastar *Lophaster gaini*
page 27
seastar *Macroptychaster accrescens*

page 31

astropectinid sea star, probably *Macroptychaster accrescens* or *Leptychaster* sp.

Page 38

seastar *Notasterias armata*

page 39

seastar *Odontaster meridionalis*

page 43

seastar *Odontaster validus*

page 50
seastar *Perknaster aurorae*
page 61

seastar *Perknaster fuscus antarcticus*
page 62

seastar *Glabraster antarctica*
page 70

seastar *Psilaster charcoti*
page 75
possibly the seastar *Pteraster affinis*

John H. Dearborn and others advised on seastar identifications.

June 2019: Taxonomic names checked in Zoological Record and World Register of Marine Species
Acodontaster conspicuus

Acodontaster conspicuus is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, South Orkney Islands, South Sandwich Islands, South Georgia Island, Bouvet Island, and Falkland Islands between 0 and 761+ meters depth \[3,5,6,7,8\]. *A. conspicuus* has been collected at sizes up to fourteen centimeters in radius from its center to the tip of an arm \[4,6\].

The color of *Acodontaster conspicuus* (shown on the right compared to *A. hodgsoni* on the left) has been recorded as pink, orange, pale orange, brown, and brownish yellow and it may be yellowish towards the edges \[4,6\]. *A. conspicuus* has a flattened disc with arms wide at their base and narrowing quickly with a thin edge \[6\].
One way to distinguish *Acodontaster conspicuus* from the other Ross Sea *Acodontaster* species is by the presence of pincer-like pedicellariae on the underside of *A. conspicuus* [4].

A preserved specimen of *Acodontaster conspicuus* shows the pincer-like pedicellariae with greater clarity [4].

Pedicellaria keep the seastar's body surface clear of encrusting organisms by pinching or cutting their settling larvae.
Showing an *Acodontaster* sp. here, *Acodontaster conspicuus* is a predator of Rossellid sponges and the sponges *Hoxinella balfourensis*, *Anoxycalyx (Scolymastra) joubini* (shown here), *Antarctotetilla leptoderma*, *Haliclona scotti*, *Mycale (Oxymycale) acerata*, and *Kirkpatrickia variolosa* [1,2]. Observations suggest that a single *A. conspicuus* does not stay long on the sponge *Anoxycalyx (Scolymastra) joubini* but several accumulate, do not leave, and consume enough of the sponge to kill it [2]. In this image, see the isopod standing alongside *Acodontaster* sp. Some isopods shelter in sponges so it's possible that this isopod is inspecting a predatory visitor dining on its home.
Here’s a gang attack on an *Acodontaster* sp. by the predatory seastar *Odontaster validus*. Predators of *Acodontaster conspicuus* include the seastar *Odontaster validus* (shown here), the nemerteans proboscis worm *Parborlasia corrugatus* (in foreground), and the anemone *Urticinopsis antarcticus* [2,3]. *A. conspicuus* would reach population densities destroying the sponge community if not kept in check by *O. validus* which preys upon the larvae, young and adult *A. conspicuus* [2]. A single *O. validus* climbs up onto an *A. conspicuus* armray, everts its stomach, and digests a hole into it. An attack by a single *O. validus* isn't fatal but nearby *O. validus* probably respond to the release of *A. conspicuus* coelomic fluid and join the attack [2].
Showing an *Acodontaster* sp. here, a gang attack eventually slows the larger *Acodontaster conspicuus* seastar’s movement, more *Odontaster validus* join the attack, and the large nemertean proboscis worm *Parborlasia corrugatus* joins in as well. *A. conspicuus* seastars can become completely buried under high piles of attacking *O. validus* seastars and *P. corrugatus* worms [2].

seastar *Acodontaster hodgsoni*

Acodontaster hodgsoni is found throughout Antarctica, the Antarctic Peninsula, South Shetland Islands, South Orkney Islands, South Sandwich Islands, South Georgia Island, Bouvet Island, Crozet Islands, Heard Island, Kerguelen Islands, Prince Edward Islands, between 4 and 540 meters depth [2,3,4,5,6,7].

Acodontaster hodgsoni has been collected at sizes up to twenty centimeters in radius from its center to the tip of an arm [2].
Acodontaster hodgsoni is shown on the left compared to A. conspicuus on the right.

Acodontaster hodgsoni is a predator of the sponges Haliclona scotti, Calyx shackletoni, rossellid sponges, and Hemigellius fimbriatus [1].

As shown here, Acodontaster hodgsoni lacks the pincer-like pedicellariae alongside its underside spines, which are present on A. conspicuus [2].
Predators of *Acodontaster hodgsoni* include the seastar *Odontaster validus*, the nemertean worm *Parborlasia corrugatus*, and the anemone *Urticinopsis antarcticus* [1]. Here’s a gang attack on an *Acodontaster* sp. by the seastar *Odontaster validus* with the nemertean proboscis worm *Parborlasia corrugatus* in the foreground.
Showing an *Acodontaster* sp. here, a gang attack eventually slows the larger *Acodontaster* seastar's movement, more *Odontaster validus* join the attack, and the large nemertean proboscis worm *Parborlasia corrugatus* will join in the feeding as well.

References:
Cuenotaster involutus is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, South Orkney Islands, South Georgia Island, Shag Rocks, and Bouvet Island from 0 to 794 meters depth [1,2,4,5,6,7]. The disc of C. involutus may be flat or slightly convex, and is depressed between arms [3]. The arms of Cuenotaster involutus are long, slender, flexible, convex-surfaced, and blunt-tipped and may sometimes be coiled ventrally [3,4].

C. involutus has been collected at sizes up eleven centimeters in radius from its center to the tip of an arm [2,3,5].
The color of *Cuenotaster involutus* includes pink-brick, grey-brown, yellowish brown, white, greenish gray, and gray white [2,3,4,5].

Closer view of the distinctive and unmistakeable bristling, well-spaced rosette-like paxillae along the disc and arms of *Cuenotaster involutus* [3,4,5].

Cuenotaster involutus may be both an active predator and a scavenger [1].
The seastar *Diplasterias brucei* is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, South Orkney Islands, South Sandwich Islands, South Georgia Island (six-rayed forma), Tierra del Fuego, Crozet Islands, Heard Island, Marion and Prince Edward Islands, from 0 to 752 meters depth [3,6,7,8,9,10,11,12].
Diplasterias brucei color can be light blue-green on top with white spines and a whitish border to the disc and arms with the arm tips blood-red; other recorded colors are pale grey to blue-grey, pale orange or pale blue-grey with a red eye spot at each arm tip, light brown, creamy white with red blotches [7,10].
The disc of *Diplasterias brucei* is small and convex; its arms taper gradually to blunt tips [7]. *Diplasterias brucei* has been collected at sizes up to 23.7 centimeters in radius from its center to the tip of an arm [6,7,10].
These are juvenile *Diplasterias brucei*.
As shown here, *Diplasterias brucei* specializes on molluscan prey; it is a significant predator of the bivalve mollusc *Limatula hodgsonii* which can comprise almost all of its diet [2,3]. *Diplasterias brucei* also eats the muricid gastropod *Trophonella longstaffii*, and is a scavenger on dead material [2,3].

Diplasterias brucei is a prey item for the anemone *Urticinopsis antarctica* [2].
Here is *Diplasterias brucei* on anchor ice.
Here *Diplasterias brucei* is humped up and brooding its young in a pocket formed by the underside of its body [1]. Ripe females have been observed year round [5].

Closer view of the eggs being brooded by *Diplasterias brucei*, as seen from its underside, the ventral side of the seastar.

Brood protection occurs quite commonly among Antarctic marine invertebrates [4].
A Diplasterias brucei is humped up and brooding its young.
Yolky eggs of *Diplasterias brucei*.

Brood protection helps larvae avoid the stresses of the environment and predation [4]. Brooding helps larvae avoid the dangers of being eaten if the larvae were planktonic in a strong seasonal planktonic cycle as seen in Antarctic waters [4].

seastar *Lophaster gaini*

Lophaster gaini is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, and Adelaide Island, at depths from 23 to 578 meters \[1,3,6\]. *Lophaster gaini* has been collected at sizes up to 17.5 centimeters in radius from its center to the tip of an arm \[1\].

©Shawn Harper
Lophaster gaini has a broad disc which is slightly concave in the center; its arms are broad at the base and taper evenly to blunt tips protected by small square plates [1].
The dorsal (abactinal) color of *Lophostoma gaini* may be red to orange to light bluish purple or slightly purple [1,2,5].
One prey item of *Lophaster gaini* is the Antarctic scallop *Adamussium colbecki* [4].

seastar *Macroptychaster accrescens*

Macroptychaster accrescens is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, South Georgia Island, and Bouvet Island at depths from zero to 655 meters [1,2,4,5,6,7].

Macroptychaster accrescens color has been recorded as orange with darker brown transverse bands across the arms and brown markings on the central disc [1].
Macroptychaster accrescens has been collected at sizes up to 26 centimeters in radius from its center to the tip of an arm [1].
Like other seastars in the Astropectinidae, *Macroptychaster accrescens* lacks sucking discs on its tube feet indicating a preference for soft or muddy environments [1].
Macroptychaster accrescens is a predator of the seastar *Odontaster validus*, the sea urchin *Stereochinus neumayeri*, gastropod molluscs, bivalves, and brittle stars [3,4].

Females of *Macroptychaster accrescens* are presumed to spawn their eggs by broadcasting them into the water where they develop into non-feeding larvae [2]. This pelagic (open ocean) non-feeding larval development is common among McMurdo Sound seastars [2]. Their larvae develop on stored yolk (lecithotrophic) which is probably an adaptation to low food levels [2]. Seastars in temperate and tropical shallow waters typically have feeding larvae [2].
Macroptychaster accrescens is uncommonly seen [4].
astropectinid sea star, probably *Macroptychaster accrescens* or *Leptychaster* sp.

These sea stars get very large and massive; this animal is probably a juvenile or young adult [1]. Several characters place it in the *Leptychaster - Leptoptychaster - Macroptychaster* complex which isn't taxonomically well-defined; the species in these genera are fairly common on the Antarctic Shelf, but variable in their morphology [1].

References: 1: John H. Dearborn, personal communication, 1999
Notasterias armata is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, Bouvet Island, and Kerguelen Islands, from 15 to 752 meters depth [1,2,7,8].
The color of *Notasterias armata* can be orange, creamy white, red, and mottled red with creamy areas [2,3]. *Notasterias armata* has been collected at sizes up to thirteen centimeters in radius from its center to the tip of an arm [2,3]. The disc of *Notasterias armata* is small and its arms taper to blunt tips [2].
The diet of *Notasterias armata* includes the Antarctic scallop *Adamussium colbecki* (shown here) as well as the bivalve *Limatula hodgsoni* [1,6].

Notasterias armata broods its young in a brooding posture with a strongly convex disc and supporting itself on bent arms [2]. Ripe females have been observed from August to February [5]. Brood protection occurs quite commonly among Antarctic marine invertebrates [4]. Brood protection helps larvae avoid the stresses of the environment and predation [4]. Brooding helps larvae avoid the dangers of being eaten if the larvae were planktonic in a strong seasonal planktonic cycle as seen in Antarctic waters [4].
seastar *Odontaster meridionalis*

Odontaster meridionalis is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, South Sandwich Islands, South Georgia Island, Shag Rocks, Straits of Magellan, Tierra del Fuego, Bouvet Island, Marion and Prince Edward Islands, Kerguelen Islands, Crozet Islands, and Heard Island, from 0 to 647 meters depth [1,2,5,6,7,8,9,10,12,14,15,16].
Odontaster meridionalis color is variable and includes yellow-white, dirty yellow, orange yellow, bright orange, pale brown, and a grey center grading to white at arm tips [2,7].

Odontaster meridionalis has been collected at sizes up to nine centimeters in radius from its center to the tip of an arm [2].
Odontaster meridionalis has a flattened disc with its arms narrowing down on the latter half of their length [8].
Odontaster meridionalis is an important predator of the sponge Homaxinella balfourensisi and also eats Rossellid sponges and the sponges Haliclona scotti, Mycale (Oxymycale) acerata, Polymastia invaginata, Hemigellius fimbriatus, Isodictya setifera (above and at left), and Pachychalina pedunculata [3,4].
Above and below, *Odontaster meridionalis* eating the bush sponge *Homanxella balfourensis*.

Odontaster meridionalis is preyed upon by the anemone *Urticinopsis antarcticus* and the seastar *Macroptychaster accrescens* [5].
Odontaster meridionalis is generally pale brown or yellowish white on the dorsal surface and lighter on the ventral surface [11].

Odontaster validus is usually bright to dull red on the dorsal (abactinal) surface and yellowish white to pale pink on the ventral (actinal) surface [11].

A classification key for these *Odontaster* species was published in 2010 [13].

Odontaster meridionalis eating the sponge *Isodictya setifera*.
Female *Odontaster meridionalis* spawn their eggs by broadcasting them into the water where they develop into feeding larvae [1]. This differs from the more common tendency of McMurdo Sound seastars to have pelagic (open ocean) non-feeding larval development [1].

Odontaster validus is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, South Orkney Islands, South Sandwich Islands, South Georgia Island, Shag Rocks, Chile, Falkland Islands, Bouvet Island, Marion and Prince Edward Islands, Heard Island, and Crozet Islands, at depths from 0 to 914 meters [7,10,11,12,14,20].

Reported distribution beyond Antarctica is not supported by mitochondrial DNA data, which shows Odontaster validus to be geographically isolated to Antarctic and subantarctic waters [21].
Odontaster validus has a broad disc and short arms tapering to blunt tips [7]. *O. validus* varies in color including dark brown, purple, purple-red, orange, red-orange, red, brick red, dark carmine, and pink; it may have light colored arm tips [7,11,14]. *O. validus* has a characteristic position with its arm tips slightly raised [7].
Odontaster validus is usually bright to dull red on the dorsal (abactinal) surface and yellowish white to pale pink on the ventral (actinal) surface [16]. *Odontaster validus* can be differentiated from *Odontaster meridionalis* which is generally pale brown or yellowish white on the dorsal surface and lighter on the ventral surface [16]. A classification key for *Odontaster* species was published in 2010 [18].
Odontaster validus has been collected at sizes up to seven centimeters in radius from center to arm tip [7,11].

Here's a juvenile and adult of *Odontaster validus*. Size-frequency distribution of *O. validus* can vary with location and is a reflection of the general level of productivity of a habitat: at McMurdo Station, their size and number decrease with depth; at Cape Evans, they are more numerous and generally smaller; and, at East Cape Armitage, they are less numerous and very small [3]. *O. validus* is slow growing; well-fed individuals need about nine years to reach thirty grams wet weight which is near the mean size of shallow-water individuals at McMurdo Station [3]. Based on its growth rate, collected sizes, and knowledge from other seastars, *O. validus* may live beyond one hundred years of age, with very low turnover in a population [17].
Here *Odontaster validus* is ganging up and eating the sea urchin *Stereochinus neumayeri*; little red amphipods are stealing food in the process. *O. validus* appears voracious to the diver, being very numerous in some areas and piled up in feeding groups; one study found that almost 50% of *O. validus* in the study area were engaged in feeding with their everted stomach [13].
Odontaster validus is omnivorous, capable of filter-feeding and eating a varied diet: detritus, small crustaceans including amphipods and the isopod Glyptonotus antarcticus, seastars, molluscs (scallop Adamussium colbecki, gastropods, bivalves Laternula elliptica and Limatula hodgsoni), hydroids (including Hydrodendron arboreum), bryozoans, sponges (Rossellid sponges, Homaxinella balfourensis [shown above]), Scolymastra joubini, Tetilla leptoderma), ostracods, sea urchin Sterechinus neumayeri, polychaete worms, carrion (dead Weddell seals), feces (Weddell seals), diatoms, and algae [shown above] [5,8,9,13,15].
Above, *Odontaster validus* seastars feeding on a dead Weddell seal pup. *O. validus* has been observed feeding on the detrital film on the surface of the sponge *Cinachyra antarctica* [at left] [13].
Odontaster validus seastars piled up feeding on Weddell seal feces under ice holes used by Weddell seals to enter and exit the water through the thick sea ice.

Odontaster validus is a prey item of the seastar *Macroptychaster accrescens* [5] and of the anemone *Urticinopsis antarcticus* (shown at left) [6].

O. validus broadcast-spawns larvae which feed on bacteria and algae and have a low metabolic rate (which predicts long-term larval survival); larvae of a comparable temperate seastar eat only algae and have a higher metabolic rate [1,2].
The seastars *Odontaster validus* and *Acondontaster conspicuus* are the two greatest predators on McMurdo sponges [5]. *Odontaster validus* is a foundation species in the McMurdo sponge-dominated benthic ecosystem and is the keystone to the interaction between the rossellid sponges and one of their primary predators, the large Antarctic seastar *Acondontaster conspicuus* [4]. *A. conspicuus* would reach population densities destroying the sponge community if not kept in check by *O. validus* which preys upon its larvae, young and adults [5]. Here’s a gang attack on *Acondontaster sp*. A single *O. validus* climbs up onto an *Acondontaster conspicuus* ray, everts its stomach, and digests a hole into it. An attack by a single *O. validus* isn’t fatal but nearby *O. validus* probably respond to the release of coelomic fluid from *A. conspicuus* and join the attack [5].
Showing an *Acodontaster* sp. seastar here, eventually the larger *Acodontaster conspicuus* seastar's movement is slowed, and more *Odontaster validus* seastars attack. *Acodontaster conspicuus* seastars can become completely buried under high piles of attacking *Odontaster validus* seastars and *Parborlasia corrugatus* worms [5].

Odontaster validus seastars attack an urchin.
Odontaster validus seastar eating a gorgonian. Odontaster validus is the most abundant seastar in the shallow shelf waters of Antarctica and is most abundant from 15 to 200 meters [9].

TAXONOMIC NOTE: Three closely related species in Odontaster have been identified by molecular barcoding (O. validus, O. roseus, and O. pearsei), but morphological variation in a single population of Odontaster validus from one locality covers the whole range of that reported for O. roseus, and overlaps that of O. pearsei [18,19,21]. With respect to McMurdo Sound, Odontaster validus is found there, but not O. roseus or O. pearsei [18].

Perknaster aurorae is found in the Antarctic Peninsula, South Shetland Islands, South Sandwich Islands, South Georgia Island, and Shag Rocks, and probably throughout Antarctica, from 18 to 310 meters depth \cite{1,4,5}. *P. aurorae* has a large convex disc and long arms that are wide at the base \cite{1}. *P. aurorae* has been collected at sizes up to fourteen centimeters in radius from its center to the tip of an arm \cite{1,3}. The dorsal color of *P. aurorae* ranges from brick with dark red markings to beige with brick bands along the arms and on the disc; the ventral color is pale yellow, with dark red interradial bands that reach the oral region \cite{1,2}.

Here's a closer view of *Perknaster aurorae*.

seastar *Perknaster fuscus antarcticus*

Perknaster fuscus antarcticus is found throughout Antarctica south of sixty degrees, in depths of 0 to 457 meters [5,8].
Perknaster fuscus antarcticus has been collected at sizes up to fourteen centimeters in radius from its center to the tip of an arm.
Color of *Perknaster fuscus antarcticus* ranges from shades of red with darker spots or stripes to a yellow or light orange background with red markings [7].

P. fuscus antarcticus has a color morph at Turtle Rock due to its diet of urchins and *Odontaster validus* [6].

A small *Perknaster fuscus antarcticus* is shown here, with a radius of four centimeters [10].
Juvenile Perknaster fuscus antarcticus are important predators of the sponge Homaxinella balfourensis (shown here) and also eat the sponges Tetilla leptoderma, Haliclona scotti, Mycale (Oxymycale) acerata, Polymastia invaginata, and Kirkpatrickia variolosa [1,2].
Here the sea urchin *Stereochinus neumayeri* is crawling across an adult *Perknaster fuscus antarcticus*. Adult *Perknaster fuscus antarcticus* are food-specific predators of the sponges *Tetilla leptoderma*, *Anoxycalyx (Scolymastra) joubini*, and *Mycale (Oxymycale) acerata* [2,3].

Below three *Odontaster validus* seastars is a juvenile *Perknaster fuscus antarcticus* eating the bush sponge *Homaxinella balfourensis*.
Perknaster fuscus antarcticus can be an opportunistic scavenger on dead material. Here *P. fuscus antarcticus* is scavenging on something with the proboscis worm *Parborlasia corrugatus*.

A juvenile *Perknaster fuscus antarcticus* eating the bush sponge *Homaxinella balfourensis*.
Perknaster fuscus antarcticus is eaten by the anemone Urticinopsis antarcticus. *P. fuscus antarcticus* appears to be chemically defended from most predators.
TAXONOMIC NOTE: World Register of Marine Species lists the *Perknaster fuscus antarcticus* subspecies as an alternate representation (an accepted name though slightly less preferred) of *Perknaster fuscus*, stating “maintained as subspecies of *Perknaster fuscus* Sladen, 1889 by Bernasconi (1967) without reference to A.M. Clark (1962)” [11].

Glabraster antarctica is found in Antarctica and South Shetland Islands, South Sandwich Islands, South Georgia Island, Shag Rocks, Bouvet Island, Burdwood Bank, Falkland Islands, Chile, Uruguay, Argentina, Crozet Islands, Kerguelen Islands, Marion and Prince Edward Islands, Marquarie Island, and Heard Island, from 0 to 3,200 meters depth [3,4,6,8,9,10,13,14,15,16,17]. *G. antarctica* has been collected at sizes up to 9.7 centimeters in radius from its center to the tip of an arm [5,9,14].

Glabraster antarctica varies in coloration as shown here. The color of *G. antarctica* can include off white, deep scarlet, pink, red purple, brick red, reddish orange, dark orange, bluish white, purplish white, bluish-grey, yellowish white, grey, pale orange, pale red and has also been described as various tints of dark red [6,8,9,10,13,15].
Glabraster antarctica is a ciliary-mucous feeder consuming the small organisms, diatoms, and detritus that shower down on its back by passing them along to its mouth [1,2].
Glabraster antarctica occasionally is an active predator on larger prey and is a scavenger [2].
Glabraster antarctica is a morphologically variable species with morphotypes that are not genetically distinct [18]. The Antarctic Peninsula morphotype is small, with strong abactinal spination, while the large Scotia Arc morphotype lacks abactinal spines [18]. The Magellanic morphotype is bright red-orange with distinct abactinal spination [18].

Here is a spiny form of Glabraster antarctica [7,10]. Adult Glabraster antarctica have well developed dorsal spines or tubercles [1,2,4,9,10]. However this distinction is not so distinct in some specimens [4,6].

Taxonomic Note: Porania antarctica assigned to Glabraster genus, and subspecies glabra was synonymized [11,13].

References:
Psilaster charcoti is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, South Orkney Islands, South Sandwich Islands, South Georgia Island, Bouvet Island, Crozet Islands, Macquarie Island, Argentina, and Chile, from 10 to 3,900 meters depth [1,3,4,5,6,7]. The dorsal surface of P. charcoti is slightly convex; its arms are wide at the base, have steeply vertical sides, and taper evenly from its broad disc to the sharp arm tips [1,4]. P. charcoti has a central anus, long slender tube feet without distinct sucking discs, and its oval madreporite is between arms and nearer the edge than center [1]. The lack of distinct suckers on the tube feet of P. charcoti indicates a preference for a muddy environment [1]. P. charcoti has been collected at sizes up to sixteen centimeters in radius from its center to the tip of an arm [2,4]. The color of P. charcoti is reddish brown, brown yellow, light tan, bright or pale pink, purplish, or violet and its edges may be lighter; young may be pale yellow [1,4,6]. Psilaster charcoti has been collected with its stomach filled with mud, fecal material, the remains of a polychaete worm, and, pieces of a colonial ascidian; it has also been captured with hooks baited with fish chunks [3]. Thus P. charcoti is an active predator on some invertebrates and ingests mud to eat organisms therein; it also scavenges on feces and dead organisms [3]. P. charcoti is noted as being slimy, suggesting ciliary-mucus feeding [3].

possibly the seastar
Pteraster affinis

This seastar was photographed at New Harbor at about twelve meters depth [2].

Taxonomic Note: *Pteraster affinis* reported by AM Clark [1]. John Pearse said it looked like the *aculeatus* subspecies based on photo identification [3]. That subspecies has been synonymized into the parent species [4].