Cnidaria – Anthozoa: anemones, soft coral

UNDERWATER FIELD GUIDE TO ROSS ISLAND & McMURDO SOUND, ANTARCTICA

Peter Brueggeman

The National Science Foundation's Office of Polar Programs sponsored Norbert Wu on an Artist's and Writer's Grant project, in which Peter Brueggeman participated. One outcome from Wu's endeavor is this Field Guide, which builds upon principal photography by Norbert Wu, with photos from other photographers, who are credited on their photographs and above. This Field Guide is intended to facilitate underwater/topside field identification from visual characters. Organisms were identified from photographs with no specimen collection, and there can be some uncertainty in identifications solely from photographs.

© 1998+; text © Peter Brueggeman; photographs © Steve Alexander, Peter Brueggeman, Canadian Museum of Nature (Kathleen Conlan), Paul Cziko, Guenter Foersterra, Shawn Harper, Luke Hunt, Adam G Marsh, Jim Mastro, Bruce A Miller, M Dale Stokes, & Norbert Wu. Photographs may not be used in any form without the express written permission of the photographers. Norbert Wu does not grant permission for uncompensated use of his photos; see his FAQ at www.norbertwu.com
anemone *Artemidactis victrix*

Page 7

anemone *Edwardsia meridionalis* or *Scolanthus intermedius*

Page 11

anemone *Edwardsiella ignota*

Page 13

anemone Edwardsiidae family

Page 15
anemone *Hormathia lacunifera*

page 17

salmon anemone *Isotealia antarctica*

page 22

anemone *Stomphia selaginella*

page 30

anemone *Urticinopsis antarctica*

page 38
soft coral *Alcyonium antarcticum*
page 48

stoloniferous soft coral *Clavularia frankliniana*
page 55

nephtheid soft coral *Gersemia antarctica*
page 59
gorgonian *Onogorgia nodosa*
page 70

gorgonian, family Ellisellidae, possibly *Ctenocella* sp.
Page 74

sea whip
page 76
unidentified soft coral

page 79

May 2019: Taxonomic names checked in Zoological Record and World Register of Marine Species
Artemidactis victrix is found in Antarctica, South Shetland Islands, South Orkney Islands, South Georgia Island, Burdwood Bank, and Punta Arenas/Chile, at depths from 5 to 439 meters [1,4,5].
Artemidactis victrix can be up to thirteen centimeters long (preserved) with the pedal disc being 6.5 centimeters wide [1].

The column of Artemidactis victrix is smooth and cylindrical, dilating into a wide expanded upper portion which can fold backwards and hide the upper part of the column, with tentacles pointing downward in a fringe at the edge of the oral disc [2]. The oral disc of A. victrix is much wider than its column [2].

Artemidactis victrix is white, yellowish-white, salmon, or red in color [1,5].
The oral disc of *Artemidactis victrix* is usually hidden under its partially expanded actinopharynx [5]. Stephenson said the actinopharynx is “puffed out” and that “the extruded part of the actinopharynx ... forms two great rounded inflated lips, which are strongly and regularly ridged and furrowed” [1]. *A. victrix* tentacles are finely striated and taper from a broad base to a blunt or pointed tip [2].
Artemidactis victrix has up to three hundred tentacles arranged in four or five cycles [1,2,4]. Larger specimens of A. victrix have a tentacular crown diameter of 8.4 centimeters and tentacle length of 2.1 centimeters [2].

Artemidactis victrix is found in McMurdo Sound's second and third benthic faunal zone below 15 meters depth [3].

anemone *Edwardsia meridionalis* or *Scolanthus intermedius*

Edwardsia and *Scolanthus* anemones burrow in mud, sand, or gravel, with the lower part of their column having a thickened cuticle, into which they can retract [3]. *E. meridionalis* and *S. intermedius* co-occur in McMurdo Sound, and can be distinguished by nemathybome (series of nematocyst-bearing sacs in column) and tentacle arrangement, and by muscle histology [4,7]. *Edwardsia* and *Scolanthus* anemones are similar to each other, with *Scolanthus* differing from *Edwardsia* in lacking a physa/foot; however, some *Edwardsia* species have very small physa [10].
Here is Edwardsia sp. removed from the substrate.

Edwardsia meridionalis has been reported from McMurdo Sound locations and the open Ross Sea, though its distribution may be wider to encompass the Antarctic Peninsula, South Georgia Island, Tierra del Fuego, and Chile from 5 to 500 meters depth [1]. *E. meridionalis* typically has sixteen white-tipped colorless tentacles in two circles of eight with the inner tentacles longer than the outer tentacles; twelve to eighteen tentacles have been counted in specimens [1]. The column of *E. meridionalis* has been measured up to 3.5 centimeters long and 0.25 centimeters in diameter, and has eight white elongated blotches over a chestnut-colored region [1]. Inner tentacles are about 11.25 millimeters long and outer tentacles about nine millimeters long [1].

Edwardsia meridionalis is found burrowed in mud, sand, gravel, sponge spicule mats, and cobbles and is most abundant between 6 to 65 meters [1]. *E. meridionalis* is a dominant species in the McMurdo jetty soft-bottom macrofaunal community [2]. A study examined the gut contents of *E. meridionalis* and found diatoms, egg cases, copepods, polychaetes (pelagic and *Spiophanes tcherniai*), and the tanaid *Nototana/is dimorphus* [2]. Its predators include the fish *Trematomus bernacchii* and *Trematomus hansi*oni [2].

Scolanthus intermedius has been reported from McMurdo Sound, the Antarctic Peninsula, South Georgia Island, Chile, and Tierra del Fuego, from 6 to 300 meters depth [1,4,5,7,8]. *S. intermedius* has sixteen tentacles in two circles of eight [4,8]. *S. intermedius* is up to 3.8 centimeters long and 0.45 centimeters wide [4,8].

Taxonomic note: *Edwardsia intermedia* was changed to *Scolanthus intermedius* [9].

anemone *Edwardsiella ignota*

Edwardsiella ignota was first described from specimens collected in Chile at depths from 40 to 60 meters; this photo was taken at 24 meters depth on Ross Island (Cape Armitage or Little Razorback Island) [2,5]. *E. ignota* can have twenty to forty tentacles, with the inner tentacles larger and longer than the other ones, and a thin cuticle on the lower part of its column [2,4]. *Edwardsiella ignota* can be distinguished from *Edwardsia meridionalis* by the number of tentacles (in live and preserved material), and the coloration pattern (live material only) [1].

Edwardsiella anemones do not burrow, and are usually found in worm holes or holes and crevices among rocks [3,4]. *Edwardsiella* anemones have three cycles of tentacles, are ridged on the uppermost part of their column, and have a thickened cuticle on the lower part of their column [3,4,6].
Members of the anemone family Edwardsiidae are generally small and shy; they are seldom found, with the result being that knowledge of their distribution is patchy [3].

Taxonomic Note: First described by Carlgren as *Fagesia ignota* [2]. Carlgren noted the tentacle count and other anatomical details for *Fagesia* in an earlier work [4]. The genus *Fagesia* is a junior synonym of *Edwardsiella* [3,6].

Members of the anemone family Edwardsiidae are generally small and shy; they are seldom found, with the result being that knowledge of their distribution is patchy [1].
anemone *Hormathia lacunifera*

Hormathia lacunifera is found throughout Antarctica and the Antarctic Peninsula, South Shetland Islands, South Orkney Islands, South Sandwich Islands, South Georgia Island, off Falkland Islands, Bouvet Island, and off Rio Plata in Argentina at depths from 15 to 3,020 meters [1,3,4,7].

Hormathia lacunifera can be up to 107 millimeters high with a column up to sixty millimeters diameter [1,6].

Hormathia lacunifera is often found attached to rocks [6].
Hormathia lacunifera is found in McMurdo Sound's second benthic faunal zone between 15 and 33 meters depth [2].
The cylindrical column of *Hormathia lacunifera* has two histologically different divisions (shown here), with the lower division (scapus) having a strong reticulated brownish or yellowish cuticle with rectangular tubercles arranged in rows, and the upper division (scapulus) being whitish, yellowish, or pinkish, and is smooth or has shallow longitudinal ridges [1,3,5,6,7].

Three externally different morphotypes of *Hormathia lacunifera* have been found, differing in presence and development of cuticle and tubercles in the scapus [6].
The 96 tentacles of *Hormathia lacunifera* are arranged in an inner row of 48 longer tentacles (up to 2.5 centimeters) and a outer marginal row of 48 shorter tentacles (up to 0.8 centimeter) [1,3,6].

The oral disc of *Hormathia lacunifera* is flat, and up to 75 millimeters in diameter, being wider than the column [6].
The tentacles of *Hormathia lacunifera*, like the scapulus (upper part of column) and oral disc, are whitish, yellowish, or pinkish [1,5,6]. The scapulus (upper part of column) and oral disc, may be yellow-orange [1,5,6,7]. *H. lacunifera* tentacles are smooth, tapered to a point and relatively long, and are longitudinally ridged [1,5,6].

salmon anemone *Isotealia antarctica*

Isotealia antarctica is found in Antarctica and in Bouvet Island, Chile, and Argentina at depths from 25 to 600 meters [2,3,5,7,9,11,13].

The somewhat blunt and conical tentacles of *Isotealia antarctica* are arranged in six cycles and are 168 in number (also reported as 192) [2,3,4,7,13]. The points of the tentacles are often pulled inward, and the inner tentacles are longer than outer tentacles [3,4,11,13].
The column of *Isotealia antarctica* is cylindrical, flat-surfaced with fine wrinkles and folds (visible mesenterial insertions), and is colored light pink, salmon, brown-violet or orange [3,5,12,13].

Oral disc and tentacles of *Isotealia antarctica*. The margin of *I. antarctica* has up to 100 small pseudo-acrorhagi (marginal pseudospherules without special nematocysts) [3].
The pedal disc of *Isotealia Antarctica* is wider than the oral disc [13].

Isotealia antarctica is among the largest and most conspicuous benthic invertebrates in the second benthic zone of Cape Armitage between 15 and 33 meters depth [1].
Here *Isotealia antarctica* is shown devouring the medusa *Periphylla periphylla*. Large medusae or jellyfish which get close enough to the bottom in shallow water are prey to be captured by an anemone's tentacles [1]. The struggle can continue for quite awhile. The medusa pulses its bell as it tries to swim away while the anemone slowly pulls the medusa into its mouth.
Isotealia antarctica (on the right) is probably grabbing at the same prey as Urticinopsis antarctica (on the left).
Isotealia antarctica (on the left) grabbing at the same *Desmonema glaciale* jellyfish as *Urticinopsis antarctica* (on the right). It appears that *I. antarctica* has been pulled off its attachment, probably by the struggles of the jellyfish, and has been seen attached to jellyfish it is consuming [10].
Here is *Isotealia antarctica* at Puerto Chacabuco, Chile in 25 - 30 meters depth, with the pedal disc being 2-3 centimeters diameter [8].

The anemone column was nearly invisible being covered with mud [8].
Here is a side-by-side comparison of *Urticinopsis antarctica* (on the left) and *Isotealia antarctica* (on the right).

Taxonomic Note: Dell 1972 states that *Isotealia antarctica* is believed to be a synonym of *Tealianthus incertus* by Carlgren, citing Carlgren's 1939 and earlier works [6]. Carlgren in 1949 and 1959 refers to it as *Isotealia antarctica* and differentiates the two genera in 1949 [5,7]. *Isotealia antarctica* in Patagonian Chile is reported with 96 tentacles [11].

anemone *Stomphia selaginella*
Stomphia selaginella is found in Antarctica and the Antarctic Peninsula, South Shetland Islands, South Orkney Islands, South Georgia Island and Shag Rocks, and Bouvet Island at depths from 9 to 1,674 meters [2,3,5,7,8]. Above, Stomphia selaginella is perched on a hydroid above a Tritoniella belli egg mass.

Stomphia selaginella perched on a feathery tube.

Stomphia selaginella is found in McMurdo Sound's third benthic faunal zone below 33 meters depth [1].
Specimens of *Stomphia selaginella* have been measured up to ten centimeters high and six centimeters in diameter; the pedal (foot) disc diameter a bit less than length [2,3].
The skin of Stomphia selaginella has a distinct coloration, with a white column with irregular orange spots, an oral disc that is light red or orange with dark orange radial lines at mesenterial insertions, a light orange mouth and actinopharynx, and light orange tentacles with two darker orange bands [3,6,7,8].
The white balls within the tentacles of the upper *Stomphia selaginella* anemone are embryos. *Stomphia selaginella* females brood their young internally [3]. The tentacles of *S. selaginella* are thick and pointed, numbering 64 to 68 in most anemones [some authors report 48 to 80], and are restricted to the margin of the anemone’s column, with inner tentacles longer than outer ones [2,3,4,7].
Young *Stomphia selaginella* have oral disc diameters of three to six millimeters with their pedal disc shaped into a cone [3].
Stomphia selaginella has two morphotypes: thin and delicate, or thick and robust [7].
anemone *Urticinopsis antarctica*

Urticinopsis antarctica is found in Antarctica and the South Shetland Islands from 6 to 223+ meters depth [2,5,6].
Urticinopsis antarctica has a cylindrical massive sandy-colored body column up to fifteen centimeters high and eleven centimeters in diameter [2,7]. *Urticinopsis antarctica* is among the largest and most conspicuous benthic invertebrates in the Cape Armitage community between 15 and 33 meters depth and is found below 33 meters as well [1].
The tentacles and oral disk of *Urticinopsis antarctica* are dirty white [2,7]. *U. antarctica* tentacles range in number from 120 (1.2 centimeter diameter anemone) to 600 - 800 (10 centimeter diameter anemone) [2,4]. Contracted tentacles are short and conical with slight longitudinal furrows and sometimes rounded on the end [2,4,6].
Urticinopsis antarctica may bend over to engulf a seastar (*Perknaster fuscus antarcticus* shown here). *U. antarctica* feeds predominantly on seastars and sea urchins which are 77% of its diet [1].
The sea urchin *Stereochinus neumayeri* is the most frequent prey of *Urtcinopsis antarctica* at 65% of its diet \[^1\]. *S. neumayeri* shields itself from the anemone's tentacled grasp with attached bits of shell, debris and algae; the shells and debris often have stinging hydroids on them (see the whitish polyps on top of the urchin at left). If the anemone touches the urchin's hydroids, it releases the urchin. If the urchin is aware of the anemone's tentacles, the urchin releases its protective camouflage and escapes. If this camouflage isn't present on the urchin, *U. antarctica* captures and eats the urchin \[^1\].
The seastars *Odontaster validus* (shown being devoured above) and *Diplasterias brucei* are significant prey items at 4% and 5% of the diet of *Urticinopsis antarctica* respectively [1]. Combined predation on the seastar *Acodontaster conspicuus* by *Urticinopsis antarctica* and the seastar *Odontaster validus* minimally killed 3.5% of the population of the seastar *Acodontaster conspicuus* in one year at Cape Armitage [3].

Urticinopsis antarctica is a generalist in its diet, and one study found in its gastrovascular cavity molluscs (*Adamussium colbecki, Laevilacunaria pumilia, Eatoniella caliginosa, a Rissoid gastropod*), a Comatulida crinoid, sea urchin *Sterechirus neumayeri*, ophiuroid *Ophiurolepis brevirima*, and fish *Trematomus* sp. [8].
Urticinopsis antarctica also feeds on large medusae or jellyfish (Desmonema glaciale shown here) which get close enough to the bottom in shallow water to be captured by the anemone's tentacles; 21% of its diet are medusae [1].
Divers may occasionally see two *Urticinopsis antarctica* anemones devouring the same medusa, *Diplulmaris antarctica* shown here.
A *Diplulmaris antarctica* jellyfish with its hitchhiking hyperiid amphipods, being devoured by the anemone *Urticinopsis antarctica*.
Here is a side-by-side comparison of *Urticinopsis antarctica* (on the left) and *Isotealia antarctica* (on the right).

soft coral *Alcyonium antarcticum*

Alcyonium antarcticum is found in Antarctica and the Antarctic Peninsula, South Shetland Islands, South Georgia Island, Shag Rocks, Kerguelen Island, Heard Island, Burdwood Bank, Falkland Islands, and Argentina from shallow depths down to 642 meters [6,7,8,9,10,11,12,15].
The color of *Alcyonium antarcticum* is white, grayish white, grayish brown, light rose, orange, pale orange, or orange pink with white tentacles [1,6,7,9,10,11].
Alyconium antarcticum has been measured at population densities of 0.02 and 7.3 colonies per square meter at Explorer's Cove and Arrival Heights respectively [5].
Individual colonies of *Alcyonium antarcticum* live at least 4.5 years, and many adults have shown no measurable growth over four years [5].
Alcyonium antarcticum produces chemicals that it releases into the water surrounding itself to deter predators and bacterial growth [4]. These anti-predator chemicals cause tube-foot retraction in the seastars Perknaster fuscus and Odontaster validus [2].
Juvenile Alcyonium antarcticum about two centimeters tall [14].
Alcyonium antarcticum feeds on plankton [3]. It has few predators, and is preyed upon by the sea spider Colossendeis megalonyx [2].

Taxonomic Note: Alcyonium paessleri was synonymized with A. antarcticum in 1992 [6]. The diagnosis of the genus Alcyonium was revised in 1986 [13].

Clavularia frankliniana is found in Antarctica and the Antarctic Peninsula and South Georgia Island at depths from 12 to 675 meters [2,3,4,7,9,22]. C. frankliniana is nearly transparent, white or pinkish to yellowish white [2]. C. frankliniana is shown here attached to sea urchin Sterechinus neumayeri.
Clavularia frankliniana can be found on rock or gravel bottoms, attached to stones, worm tubes, and shells [2,3,4,8].

An individual polyp (zooid) of Clavularia frankliniana averages 8.3 millimeters in height (can be up to 25 millimeters), has eight feathery tentacles [4,8,16,18].

Individual polyps die within 1.5 years though clones may live much longer [7].
An individual polyp of *Clavularia frankliniana* is connected by ribbon-like or spreading stolons to other polyps \[4,8,16,18\]. The stolon adheres to hard objects, thus attaching the colonies \[18\]. *C. frankliniana* has been measured at population densities of 0.18 and 1,337.3 polyps per square meter at Explorer's Cove and Arrival Heights respectively \[7\].

Clavularia frankliniana has a diet linked to food resuspended from the seafloor, probably by currents, bivalve molluscs, echinoderms, and fish; its polyps are located close to the bottom, and it feeds on diatoms, protozoans, foraminiferans, nematodes, and invertebrate larvae \[21\]. *C. frankliniana* has few predators and is preyed upon by the nudibranchs *Tritoniella belli* and *Notaeolidia gigas* and also by the sea spiders *Colossendeis robusta*, *Colossendeis megalonyx*, and *Thavmastopycnon striata* \[1,3,4\].
Extracts from *Clavularia frankliniana* cause tube-foot retraction in the seastars *Perknaster fuscus* and *Odontaster validus* which indicates feeding deterrence [4].

Extracts of the nudibranch *Trioniella belli* and the soft coral *C. frankliniana* have chimyl alcohol in common. The common predatory seastar *Odontaster validus* shows feeding deterrence to *Trioniella belli* mantle tissue and to chimyl alcohol [6]. *Trioniella belli* probably defends itself chemically against predators using chimyl alcohol that it obtains from *C. frankliniana*.

Taxonomic Note: In 1906, Kukenthal changed *Clavularia frankliniana* to *Anthelia frankliniana* [11]. In 1929, Molander changed *Clavularia frankliniana* to *Pachyclavularia cylindrica* var. *frankliniana* [9]. In 1940, Gohar reassigned *Anthelia frankliniana* to *Clavularia frankliniana* and affirmed *Clavularia* as the genus instead of *Pachyclavularia* [12]. In 1960, noting Gohar, Verseveldt affirmed Molander's change to the genus *Pachyclavularia* and noted *Clavularia frankliniana* as properly being in the genus *Pachyclavularia* (though this work only sorted out genera and didn't sort out species characters) [10]. In 1974, it is referred to as *Clavularia cylindrica* [19]. In 1990, *Clavularia cylindrica* is referenced from original description and reports in south Africa; author notes inadequate descriptions in literature and need for revision of genus [20]. In 1990, *Pachyclavularia cylindrica* is noted as resembling *Pachyclavularia frankliniana* so the two species are deemed distinct [17]. Recent non-taxonomic work referred to this soft coral as *Clavularia frankliniana*; those authors verified the ID as *Clavularia frankliniana* with Frederick M. Bayer of the Dept of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution [4, 6, 7, 14]. The Smithsonian’s US National Museum Polar Invertebrate Catalog refers to *Clavularia frankliniana* [15]. In 1981, Bayer published a key to Octocorallia genera which sorted out *Clavularia* and *Pachyclavularia* so it is assumed his later identification of the genus of this organism as *Clavularia frankliniana* is based on that published key [16]. Reassignment of the species *frankliniana* to the genus *Clavularia* appears to be unpublished as of May 2019.

References:
nepthheid soft coral *Gersemia antarctica*

Gersemia antarctica is found in McMurdo Sound, South Georgia Island, South Sandwich Islands, and Bouvet Island from 12 to 3,144 meters depth [3,6,7,8,11]. *Gersemia* spp. have been reported from the eastern Weddell Sea, Bransfield Strait off the Antarctic Peninsula, and the South Shetland Islands [13].

In McMurdo Sound, *Gersemia antarctica* is found possibly on White Island and on the coastline from Granite Harbor down to Cape Chocolate at depths from 18 to 250 meters, and has been found at the south end of Cape Evans from 12 to 18 meters depth [3,7,11].

In Explorer's Cove at New Harbor, *Gersemia antarctica* is found in soft sediment communities where it is anchored to scallop shells, small rocks, or clay substrate [3]. At Explorer's Cove, *Gersemia antarctica* averages 0.04 colonies per square meter and is found there between 18 and 33 meters depth, with most colonies found from 27 to 33 meters depth [3].
Gersemia antarctica colonies can inflate to over two meters in height [1].
In addition to an upright feeding posture, *Gersemia antarctica* can bend its entire colony down so that the polyps reach the bottom to feed there [1].
The food that *Gersemia antarctica* seeks on the bottom includes benthic diatoms, foraminiferans, and particulate organic matter [1].

This grazing behavior has likely evolved to supplement plankton capture from the water and is useful in Antarctica where plankton in the water column is seasonal [1].
A *Gersemia antarctica* colony can move like an inch worm, to reach undisturbed sediments for grazing [1]. *Gersemia antarctica* colonies have been observed moving over fourteen meters in one year's time [1].

When a *Gersemia antarctica* colony encounters sediment previously grazed by *G. antarctica*, it contracts from it [1].
Gersemia antarctica colonies have been observed surviving for at least 4.5 years [4].
Sea spiders *Achelia* sp. clinging to *Gersemia antarctica*. Adult *Achelia* sea spiders are small, spending their lives clinging to the substrate on which they feed [12]. The protonymphon stage of *Achelia* may be passed in the tissues of the organism on which juveniles and adults feed [12].

The sea spider *Thavmastopycnon* sp. is also a predator of *Gersemia antarctica* [3].

Gersemia antarctica produces chemicals that it releases into the water surrounding itself to deter predators and bacterial growth [2].
Rob Robbins, McMurdo Station’s Scientific Diving Coordinator, photographed *Gersemia antarctica* at the south end of Cape Evans at 12 to 18 meters depth; this is the first recorded location for *Gersemia antarctica* on Ross Island [3,6,7,8,11].

Found here at 24 meters depth, *Gersemia antarctica* hangs down from the wall at the south end of Cape Evans [14].
Taxonomic Note: First described by Kukenthal as *Eunephthya antarctica* in 1906 and discussed in 1914 by Gravier in comparison with another species of *Eunephthya* [6,10]. In 1961, Utinomi revised the family Nephtheidae for the genera *Gersemia*, *Duva*, *Drifa*, and *Pseudodrifa* and renamed *Eunephthya antarctica* to *?Drifa antarctica* and also synonymized *Paraspongodes antarctica* under *?Drifa antarctica* [5]. Recent non-taxonomic work referred to this soft coral as *Gersemia antarctica*; those authors verified the ID as *Gersemia antarctica* with Frederick M Bayer of the Dept of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution [1,2,3,4,7]. The Smithsonian's US National Museum Polar Invertebrate Catalog refers to *Gersemia antarctica* [8]. In 1981, Bayer published a key to Octocorallia genera which sorted out *Gersemia* and *Drifa*, so it is assumed his later identification of the organism as *Gersemia antarctica* is based on that published key [9]. A reassignment of *Eunephthya antarctica* or *?Drifa antarctica* to the genus *Gersemia* appears to be unpublished as of May 2019. *Gersemia antarctica* superficially resembles *Gersemia juliepackardae* but differs internally in radiates and sclerites [9].

Onogorgia nodosa is found in Antarctica and the Antarctic Peninsula, South Shetland Islands and South Georgia Island at depths from 21 to 433 meters [1,3,4].

Onogorgia nodosa has unbranched pinkish-yellow whip-like colonies with a thin holdfast and its axis having longitudinal grooves [3,4]. O. nodosa has 2-3 whorls per centimeter of axial length, and up to 4.5 mm at middle part of colonies, with its polyps in one row at each whorl [3,4].
Onogorgia nodosa with contracted polyps.

gorgonian, family Ellisellidae, possibly *Ctenocella* sp.

Cnidarian predators like gorgonians hunt passively, waiting with outstretched tentacles for prey to drift by [1].

The individual gorgonian polyps are linked by a body wall [1]. A horny protein called gorgonin contains fused calcareous spicules or sclerites and forms a solid or jointed central rod [1].
Sea Whip

Sea whips are several genera of corals of the order Gorgonacea, characterized by long, whiplike growth [1]. The whip is a colony of tentacled polyps growing one upon one another in a continuous single stem. Spicule needles of lime are embedded in the polyp which provides firm, flexible support for the whip [1].
Sea whips differ from sea pens in that the sea whip polyps come directly off the center stalk, whereas sea pen polyps are on branches from the central stalk.

soft coral